演讲者 | H. Jonathan Chao | 头衔职位 | ECE Department at New York University | 时间 | 2019 年 6 月 21 日(周五)下午 15:00 | 地点 | 复旦大学邯郸校区逸夫楼 407 | 联系人 | 徐扬,xuy@fudan.edu.cn |
|  |
演讲简介
While current widely available TCP protocols are mainly throughput-oriented designs, meeting stringent delay requirements of new applications such as virtual reality and vehicle-to-vehicle communications on cellular network requires new network protocol/system designs. C2TCP is an effort toward that new design direction. C2TCP is inspired by in-network active queue management designs and motivated by lack of a flexible end-to-end approach which can adapt itself to different applications’ QoS requirements without modifying any network devices. It copes with unique challenges in cellular networks for achieving ultra-low latency (including highly variable channels, deep per-user buffers, self-inflicted queuing delays, and radio uplink/downlink scheduling delays) and intends to satisfy stringent delay requirements of different applications while maximizing the throughput. C2TCP works on top of classic throughput-oriented TCP and accommodates various target delays without requiring any channel prediction, network state profiling, or complicated rate adjustment mechanisms. We have evaluated C2TCP in both real-world environment and extensive trace-based emulations and compared its performance with different TCP variants and state-of-the-art schemes including PCC-Vivace, Google’s BBR, Verus, Sprout, TCP Westwood, and Cubic. Results show that C2TCP outperforms all these schemes and achieves lower average delay, jitter, and 95th percentile delay for packets.
关于讲者
H. Jonathan Chao is Professor of Electrical and Computer Engineering (ECE) at NYU, where he joined in January 1992. He is currently Director of High-Speed Networking Lab. He was Head of ECE Department from 2004-2014. He has been doing research in the areas of software defined networking, network function virtualization, datacenter networks, packet processing and switching, network security, and machine learning for networking. He holds 62 patents and has published more than 260 journal and conference papers. During 2000–2001, he was Co-Founder and CTO of Coree Networks, NJ, where he led a team to implement a multi-terabit router with carrier-class reliability. From 1985 to 1992, he was a Member of Technical Staff at Bellcore, where he was involved in network architecture designs and ASIC implementations, such as the world’s first SONET-like Framer chip, ATM Layer chip, Sequencer chip (the first chip handling packet scheduling), and ATM switch chip. He is a Fellow of National Academy of Inventors (NAI) for “having demonstrated a highly prolific spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development, and the welfare of society.” He is a Fellow of the IEEE for his contributions to the architecture and application of VLSI circuits in high-speed packet networks. He received Bellcore Excellence Award in 1987. He is a co-recipient of the 2001 Best Paper Award from the IEEE Transaction on Circuits and Systems for Video Technology. He coauthored three networking books. He worked for Telecommunication Lab in Taiwan from 1977 to 1981. He received his B.S. and M.S. degrees in electronics engineering from National Chiao Tung University, Taiwan, in 1977 and 1980, respectively, and his Ph.D. degree in electrical engineering from The Ohio State University in 1985.